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Galilean limit of equilibrium relativistic mass distribution 
for indistinguishabIe events 

L Burakovskyt and L P Horwitzd 
School of Physics and Astronomy. Raymond and Beverly Sackler Faculty of Exact Sciences, 
Tel-Aviv University, Tel-Aviv 69978, Israel 

Received 28 February 1994 

Abstract. The relativistic distribution for indistinguishable events is considered in the mass- 
shell limit mz 2 M‘. where M is a given intrinsic properly of the events. The characteristic 
thermodynamic quantities are calculated and subject to the zero-mass and the high-lemperature 
limits The results are shown to be in agreemen1 with the corresponding expressions of an on- 
mass-shell relativistic kinetic theory. The Galilean limit c + w. which coincides in form with 
the low-temperature limit, is considered. The theory is shown to pass over lo a non-relativisttc 
statistical mechanics of indistinguishable paiicles. 

1. Introduction 

In this paper we consider the mass-shell and the Galilean limits of an equilibrium relativistic 
distribution for indistinguishable events studied in a previous work [l]. In that work we 
studied an identical many-body system within the framework of a manifestly covariant 
relativistic statistical mechanics discussed in a series of papers I2-41. In this framework, 
for an N-body system, the N events generating the N particle world lines are considered 
as the fundamental dynamical objects of the theory; they are characterized by positions 
q” = ( c t ,  q )  and energy-momenta p’ = ( E / c , p )  in an 8N-dimensional phase space. Their 
motion is parametrized by a continuous Poincari-invariant parameter called the historical 
time. Such a system of N events is described by generalized Boltzmann equation [5 ] ,  
whose equilibrium solution gives the distribution functions (for both bosonic and fermionic 
events aeated simultaneously in one expression) coinciding with the corresponding grand- 
canonical distributions obtained in 121 for the static Gibbs ensembles. Upon integration of 
this dishibution function over angular and hyperangular variables, one obtains the relativistic 
mass distribution [I]. We found expressions for the pressure and the energy density in such 
a system and obtained the relativistic equation of state. Now we turn to a mass-shell form 
of that equilibrium distribution and to its Galilean (non-relativistic) limit, 

The Galilean limit of a manifestly covariant relativistic statistical mechanics was 
considered in [6,7] by taking c + 00 (compared to all other velocities). In this limit 
the relativistic relation between the energy E and the mass m 

2 2  E 2 = m  + p  
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transforms to 
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P2 E = m + - -  
2m 

If we require in addition [6,7] that the quantity 

q = c2(m - M )  

may take any value, however, finite as c + CO, then m = M(1 + O(l/c2)) (i.e. the 
'mass-shell limit'), and the relation between E and m takes on the form [7] 

P2 E = m + -  
2M (3) 

where the Galilean mass M coincides with the particle's intrinsic parameter. 
In the case of an equilibrium relativistic ensemble of distinguishable events such a 

transformation of the relativistic relation between E and m gives rise to the usual non- 
relativistic Maxwell-Boltzmann distribution of p2/2M 171. 

In this work, we show that in the mass-shell limit, the equilibrium relativistic distribution 
for indistinguishable events used in [I]  approaches the distribution found by Jiittner and 
Synge 181 within the framework of an on-mass-shell relativistic kinetic theory. We also 
study the c + 00 limit of the on-mass-shell theory, and show that it goes smoothly to the 
Galilean form. 

2. Equilibrium relativistic distribution close to mass shell 

Consider the equilibrium relativistic distribution for indistinguishable events used in [ 1 J 
(we use the metric g'" = (-, +, +, +) and q = 4'. p = p'. and assume no degeneracy; 
in the case of degeneracy all the corresponding formulae throughout the paper should be 
multiplied by degeneracy factor), 

which is normalized as 

/d 'pfo(q,p) = n ( q )  (5) 

where n(q)  is the total number of events per unit spacetime volume in the neighbourhood 
of the point q. 

It follows from the relations [7] (we suppress c for the present consideration) 

q = m - M  - A < q < A  

that 

M - A < m < M + A .  (6; 
Since A may take any value as small as one wishes?, but not zero, i.e. the variation in mass 
of the particles of the ensemble may be very small, we can take the value of p 2  -mz 
restricted to a small neighbourhood of a fixed value -M2.  This permits us to write (4) as 
r91 

t I1 correspands 10 the approximate mass-shell condition Im - MI CA. 
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Introducing hyperbolic variables 131 and performing integration I 101 (p358, subsection 
3.547, formula 9) we obtain from (5) and (7) the normalization relation 

where K1 is a Bessel function of the third kind, defined by 

(9) 
The average values of p', p'p", etc, can be obtained from the corresponding relations 

K , ( z ) = p i e  1 . xiv/ZH(I)(' 12). 

of Ill, using the formula I101 (p970, subsection 8.486, fomula 13) 

Identifying, as in [llt .  

where T ,  p and ,UK are absolute temperature, chemical and mass potentials, respectively, 
we have 

where p' = p - ~ K M / ~ N  (N being the total number of events) is the 'reduced' chemical 
potential approaching p as N --t 60 or T + 0 (since in the latter case p~ + 0 [I]). 

As in previous works [1,3,4], to obtain the local energy density we make a Lorentz 
transformation to the rest frame of the local average motion. According to (14), the relative 
velocity of the new frame is 

Pc 
mC 

U = - .  

The rest-frame energy is then 

( E ) - U . P  
J F G  ( E ' )  = 

t The firsf relation implies that in thermal equilibrium Am, is independent of q 
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so that 
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To obtain the pressure and the energy density in our ensemble, as in previous works 
[ I ,  3.41, we study the particle energy-momentum tensor defined by the R4 density, 

Using the result of 131 
P"PU 

(T""(q)), = TAV / d4p fdq I P ) M  

and the expression (15) for ( p ' ~ " ) ~ ,  we obtain 

In this expression TA" is the average passage interval in r for the events which pass through 
a small (typical) 4-volume A V  in the neighbourhood of the point q of R4. 

The formula for the stress-energy tensor of a perfect fluid has the form [3] 

where p is the pressure and p is the density of energy at q .  
According to (14), 

To interpret these results, as in [1,3,4], we calculate the average (conserved) particle 4- 
current having the microscopic form 

P ( q )  = 5 a 4 ( q  - q,(r))dr. 

Using the result of [3] 

and expression (14) for ( P ' ) ~ .  we obtain 
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In the local rest frame pf = (mc, 0). 

Defining the density of particles per unit space volume as 

No(4) = (Jo(q))q (28) 

we obtain the relativistic equation of state 

N~ ~ z * = ,  {(+I )n*l e-nA(M'+m :)+nBK2(2nAMm,)/nZ) 
2Am, E,"=, {(& l ) " + ' e - " A ~ M ' + m ~ ~ ' " B ~ ~ ( 2 n A M m , ) / n ]  

p = -  

It follows from (22) and (23) that 

Let us introduce r through the relation? 
= (r - u p .  

Then 

Using the asymptotic formulae [ 111 

one obtains 
1 T +  0 

r = (  - 4 3 T + W .  (34) 

Since in thermal equilibrium there is no dependence on q .  instead of fo(q, p )  one can use 
equilibrium relativistic distribution function [5] 

where n = N / V o  is the event number density. In this case one obtains, instead of (S), 

t a s  relation is helpful when sMying  an adiabatic equation of state [IZ]. 
Equation (36) is formally equivalent to (4) and (3, with C(q) = I/(21r)'. 
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and then, from (22), (23) and (27), 
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Now using the relation [lo] (p970, subsection 8.486, formula IO) 
2n 

Knti(Z)-K,-I(Z)=ZK,(Z) (41) 

one has from (38) and (39), 

The three relations (38),(40) and (42) coincide with the corresponding relations of an 
on-mass-shell relativistic kinetic theory (see appendix A), except for the additional factor 
( T ~ y A ) / i r .  Therefore, (both the on-shell and the off-shell in the limit mz Z M 2 )  approaches 
give the same results, if one takes TAVA = n. Since 2A = Sm is the width of the mass 
deviation from its sharp value mz Y M 2 .  the latter relation can be rewritten as 

TAv6m = 2 R .  (43) 
The presence of the factor (TAvA)/z  in the expressions (38), (40) and (42) shows that, 

as 6m + 0, the corresponding quantities would go to zero, unless TA" + w. Preservation 
of finite values of p. p.  No in this singular limit implies that the presence of events in the 
ensemble with very sharp mass requires the extension of the set of events over a very wide 
range of r, and therefore, I, since they are related through the equation of motion [I31 

dt E 
dr  M .  
_ = _  

Hence 

where we used the relation (dr) = TAV and (16). In the Galilean limit c + w the argument 
of the K-functions goes to infinityf, so that one obtains, using the asymptotic formula (33) 
for z + 03. 

in agreement with [6,7]. 
If 6m is not so small, the range of r. and therefore, I, need not be very large. In this 

case, for each value of the historical time parameter t, the set of events making up the 
ensemble may be concentrated in a range o f t  which is not too large. The entire ensemble 
then moves in phase space with the development of r,  and its stationary form corresponds 
to equilibrium. For Sm --f 0 the ensemble fills a longer tube in phase space, and its 
displacement with r is not as important. It is in this limit alone that a direct comparison 
with the usual (on-mass-shell) relativistic ensemble can be made, since in this case the 
system possesses a stationarity in spacetime but not a non-hivial evolution in r, as was 
remarked in [4]. 

(W = W (45) 

This argument i s  actually equal IO nMc2fkBT. 
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3. Limiting cases 

Now we wish to consider the expressions for NO, p and p in the limiting cases A4 --f 0, 
T -+ CO. and T + 0, and to compare them with the corresponding formulae of an on- 
mass-shell relativistic kinetic theory. 

(i) M -+ 0. We remark that the dynamical evolution of the system contains the quantity 
p'pc /2M [13]. In the limit M -+ CO, this quantity is undefined; however, if we first go 
to the mass-shell limit, for which there is no non-trivial evolution in r ,  then this quantity 
becomes numerical-valued (-M/2) and the limit M + 0 is well defined. We therefore 
consider, for this limit, the on-shdresults (38),(40) and (42), obtained from the distribution 
function (35). 

Using the asymptotic formula (33) for z -+ 0, one obtains the relations 

p = k 3  R3 1 
(here Li,(z) = xEl zk/kv is the so-called polylogarithm [14J), which coincide with the 
corresponding relations of an on-shell theory, if TA,A = n (see appendix B). 

(ii) T + ca. This limit is mathematically equivalent to the limit M + 0; physically 
it means that the particles become distinguishable and possess the relativistic distribution 
found by Synge [15] , Thus, one obtains the same expressions without summation on k: 

in agreement with the textbook results, if TAVA = lr [16]. 

(iii) T -+ 0. We study here the case in which the theory is on-mass-shell. If, in the 
limit T + 0 we do not insist on the mass-she11 constraint, then the macs distribution 
remains essentially relativistic. This case was treated for distinguishable events in [7]. The 
indistinguishable case is treated in [12]. 

Using the asymptotic formula (33) for e + 00, one obtains 
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= M No + 3p (54) 
the formulae of a non-relativistic statistical mechanics of indistinguishable particlest$, if 
one takes TnvA = n and p' - M E p - M = gnr, the non-relativistic chemical potential 
[171. 

As was remarked in 171, the low-temperature limit does not necessarily coincide with the 
non-relativistic l i t  of a theory (for example, very long wavelength radiation in Maxwell's 
relativistic theory does not coincide with the static Coulomb limit; it is still radiation). We 
see that the procedure of taking the limit T + 0 on-mass-shell leads to a deformation of 
the symmetry group from Poincark to Galilean invariance, which means that this procedure 
actually coincides with the Galilean Limit c 3 CO 1191 (formally equivalent to the limit 
T -+ 0, since in both cases the argument of the K-functions in the formulae (38),(40) and 
(42), z E nMc2/kBT, goes to infinity). We shall return to a more detailed study of this 
point in future research. 

4. Non-relativistic distribution 

In conclusion we shall show that in the Galilean limit the variable E -m = p2/2M has the 
usual non-relativistic distribution for indistinguishable particles. 

We start with the normalization relation for the sharp-mass form m2 E MZ of initial 
equilibrium relativistic distribution (4). 

e - ~ ~ z - ~ m : + ~ p ~ c + ~  

n ( q )  = c(q) 1 d4p 1 e-AW-Am!tZAppc+B ' (55) 

This integral written in the local rest frame takes the form 
00 m 

dE  d 3 p ~ ~ f ~ ) " + l e - ~ A ~ E e - n ( A M ' + A m ~ - B )  = d E  d3p E(& I)n+le-nE/k~renp'lkaT 

(56) 
or, in view of (2) and (3) and the relation -A < q < A ,  

the normalization relation of a non-relativistic statistical mechanics of indistinguishable particles, etc [18], 
t See lhe corresponding formulae of a non.relatjvistic slalistical mechanics of distinguishable pa&les in 1161 
(p62, formulae (3.55)). 
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which is the usual (normalized) non-relativistic Bose-EinsteidFermi-Dirac distribution (we 
call e = p 2 / 2 ~ )  

In these formulae 
PK 
2N 

f i  = PI- M = P - M (1 + -) 
is the ‘reduced’ non-relativistic chemical potential approaching, as N + CO or T -+ 0, the 
value (@ - M) [ l ,  171. 

5. Concluding remarks 

We have considered the limiting mass-shell form of equilibrium relativistic distribution 
for indistinguishable events, studied previously in [i], and its Galilean limit. We have 
shown that the mass-shell forms of the basic thermodynamic quantities coincide with the 
corresponding expressions of a usual on-shell relativistic statistical mechanics, providing 
the important relation (43) for a width of the mass deviation over its sharp value. This 
relation implies that such a mass deviation in the system of events can be infinitely small. 
In this case the system of relativistic (mass-shell) events becomes a stationary distribution 
in spacetime, representing in this way the ensemble of the relativistic on-shell pdc les .  

In ensembles, in which the appreciable mass fluctuations can occur, the relativistic 
distributions (the equilibrium solutions of the generalized Boltzmann equation) represent 
the corresponding equilibrium relativistic distributions of mass, considered previously in 
[l ,  41, for identical and non-identical systems, respectively. 

We have seen that the characteristic limiting cases give results in agreement with 
the corresponding limits of the usual theory; the low-temperature limit on-mass-shell in 
fact corresponds to the Galilean limit c + CO, in which the statistical mechanics of 
indistinguishable events goes over to the usual non-relativistic statistical mechanics of 
indistinguishable particles. 

For ensembles with mass fluctuations the framework of a manifestly covariant relativistic 
statistical mechanics provides corrections to results obtained within the usual on-shell theory. 
Physical consequences of the mass fluctuations for relativistic systems are considered in 
[12,20,21], taking account of anti-events, i.e. the events having the opposite sign of 
the mass potential p ~ .  In [I21 an adiabatic equation of state, p cx No , IS obtained for 
the system of degenerate off-shell fermions and possible implications in astrophysics are 
discussed. In [20] statistical mechanics of the bosonic event-anti-event system is considered. 
For such a system, at some critical temperature a special type of Bose-Einstein condensation 
sets in, which provides the events making up the ensemble a definite mass and represents, 
in this way, a phase transition to the usual on-shell sector. In [21] possible applications 
of the off-shell theory in hadronic physics are discussed. The equation of state p cx T6,  
obtained in [21], corresponds to the ‘realistic’ equation of state, proposed by Shuryak [221 
for hot hadronic matter, which is in good agreement with experiment for the temperature 
range 0.2-1.0 GeV. 

6/5 . 
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Appendix A. 

Consider the following relation, which represents the normalization condition for the 
relativistic distribution function 

L Burukovsky and L P H o w &  

Expanding the denominator into power series and changing variables c = 6 / m ,  one obtains 

Since [lo] (p322, subsection 3.387, formula 3) 

one uses parametric differentiation with respect to (nm/kBT) and (IO) of the main text to 
obtain 

Thus, 

In the same way one can obtain [181 (p61, formulae (3.47) and (3.48)) 

Appendix B. 

First consider 
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where Li,(z) E;, zk/k" is the polylogarithm [141. Then 
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